PHYSICAL REVIEW E

VOLUME 51, NUMBER 6

Numerical simulation of two-dimensional late-stage coarsening
for nucleation and growth

Norio Akaiwa and D. I. Meiron
Applied Mathematics, 217-50, California Institute of Technology, Pasadena, California 91125
(Received 30 November 1994)

Numerical simulations of two-dimensional late-stage coarsening for nucleation and growth or
Ostwald ripening are performed at area fractions 0.05 to 0.4 using the monopole and dipole approx-
imations of a boundary integral formulation for the steady state diffusion equation. The simulations
are performed using two different initial spatial distributions. One is a random spatial distribution,
and the other is a random spatial distribution with depletion zones around the particles. We char-
acterize the spatial correlations of particles by the radial distribution function, the pair correlation
functions, and the structure function. Although the initial spatial correlations are different, we find
time-independent scaled correlation functions in the late-stage of coarsening. An important feature
of the late-stage spatial correlations is that depletion zones exist around particles. A log-log plot
of the structure function shows that the slope at small wave numbers is close to 4 and is —3 at
very large wave numbers for all area fractions. At large wave numbers we observe oscillations in the
structure function. We also confirm the cubic growth law of the average particle radius. The rate
constant of the cubic growth law and the particle size distribution functions are also determined. We
find qualitatively good agreement between experiments and the present simulations. In addition,
the present results agree well with simulation results using the Cahn-Hilliard equation.
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I. INTRODUCTION

Late-stage phase separation of two phase mixtures has
recently been studied through the use of numerical sim-
ulations in both two and three dimensions. Generally,
phase separation is classified in two categories. One is
spinodal decomposition in which the second phase do-
mains have interconnected structure, and the other is nu-
cleation and growth where the domains consist of isolated
particles. The quench positions and the lattice structures
of the majority and minority phases determine the do-
main structures. In the late stage of phase separation,
both of the phenomena are driven by reduction in total
surface area through diffusion, resulting in an increase
of the average domain size. The late stage of nucleation
and growth is known as coarsening or Ostwald ripen-
ing. Spinodal decomposition is generally studied using
the Cahn-Hilliard (CH) model [1]. In this model the time
evolution of the concentration field is governed by a non-
linear time-dependent diffusion equation. The CH model
is also applicable to nucleation and growth when the free
energy of the system can be represented by a single curve
which in general is not the case for solid-solid or solid-
liquid systems. In the late stage of nucleation and growth
where the supersaturation is very small, a steady state
linear diffusion equation may be a good approximation to
the diffusion field. The advantage of the use of the steady
state diffusion equation is that the formulation is much
simpler than that of the CH model. In addition, this for-
mulation does not depend on the free energy curves of
the system.

In this paper, we study two-dimensional late-stage
coarsening using the monopole and dipole approxima-
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tions of a boundary integral formulation for the steady
state diffusion equation. It is well known in three dimen-
sions that the average particle radius (r) obeys a scaling
form (r)® ~ t, and that the particle size distribution be-
comes time independent when scaled by the average ra-
dius in the late stage. This was first derived by Lifshitz
and Slyozov [2], and Wagner [3] (LSW). However, this
theory is valid only in the limit of zero volume fraction.
Many attempts have been made to extend the validity of
the theory in three dimensions (see Ref. [4] and references
cited therein).

In two dimensions, a mean field approach similar to
that in LSW theory is not applicable since the general
solution of the steady state diffusion equation diverges
logarithmically at large distances. The first theoretical
study in two dimensions was performed by Marqusee [5].
The average concentration field was approximated using
a modified Helmholtz equation. Thus the divergence at
large distances was removed due to the annihilation term
in the Helmholtz equation. The cubic growth law and the
existence of the time-independent scaled size distribution
were found also in two dimensions. The same Helmholtz
equation which was assumed in Marqusee’s theory was
derived by Hayakawa and Family [6] using the ring di-
agram approximation. Zheng and Gunton (ZG) [7] ex-
tended the method developed by Marder [8], in which the
effects of particle correlations are taken into account, for
two dimensions. As pointed out by these authors, this
method is not applicable for area fractions larger than
0.01. Even at very small area fractions, the rate con-
stant of the cubic growth law is much larger than the
others. Ardell [9] extended his three-dimensional theory
[10] to the two-dimensional case. In this mean field the-
ory, the concentration at a certain distance from a par-
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ticle, which is determined by a mean free distance of the
nearest neighbors, is approximated by a constant. Yao,
Elder, Guo, and Grant (YEGG) [11] added a source term
in the Helmholtz equation. However, their theory is not
applicable for area fractions larger than 0.085. All of the
theories predict (r)® ~ ¢, but with different rate con-
stants and size distributions. It is unclear which theory
describes the nature of the late-stage coarsening well.

Numerical simulations of two-dimensional coarsening
for a small number of particles were first performed by
Voorhees, McFadden, Boisvert, and Meiron [12] using the
boundary integral method. The objective of the simula-
tions was to test how particles change their shapes during
coarsening at large area fractions. Similar simulations
were performed by Imaeda and Kawasaki [13] using the
multipole expansion method. Larger scale simulations
were performed by Rogers and Desai [14], Chakrabarti,
Toral, and Gunton (CTG) [15], and Lacasta, Sancho,
Hernandez-Machado, and Toral [16] using the CH equa-
tion with a Ginzburg-Landau form as a free energy func-
tional. Kiipper and Masbaum [17] performed simulations
using a free energy functional determined by experimen-
tal data of a real alloy. Although these simulations give
scaling results for area fractions larger than 0.2, the scal-
ing behavior is not satisfactory at lower area fractions.
The disadvantage of simulations using the CH equation
is that the system size is restricted due to the speed and
memory size of present day computers. Yao et al. [11]
performed simulations using the monopole approxima-
tion and systems of 1000 initial particles. The simula-
tions were performed at area fractions less than 0.1, and
the systems do not seem to reach an asymptotic state,
probably due to the small system size.

Recent work in coarsening has concentrated on the
spatial correlations of particles created by the long time
diffusional interactions. The importance of the spatial
correlations has been pointed out by Marder [8] and
Tokuyama and Kawasaki [18]. However, due to the com-
plicated many body effects, present theoretical under-
standing of these correlations is not satisfactory.

The objective of this paper is to perform numerical
simulations using much larger systems than those used
previously. We investigate the particle spatial correla-
tions in both real and Fourier spaces through the use of
the radial distribution function, the pair correlation func-
tions, and the structure function. We also determine the
particle size distribution function and the rate constant
of the growth law. Finally, the results are compared with
experiments, theories, and other simulations.

II. NUMERICAL SIMULATION

We consider a system which consists of N circular mi-
nority phase particles. Note that all variables used in this
section are nondimensionalized (see Ref. [4] for scaling).
The dimensionless concentration « in the matrix phase
satisfies the steady state diffusion equation:

V3u = 0. (2.1)

In the late stage, the supersaturation is very small com-
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pared with the concentration difference between the ma-
jority and minority phases. Thus it is expected that the
diffusional time scale is much smaller than the time scale
for interfacial motion. This is the justification of the va-
lidity of Eq. (2.1). The boundary condition on the surface
of each particle is given by the Gibbs-Thomson equation
for p on §j,

u(p) = 1 (2.2)

T
where p is the position vector of the point p, r; is the
radius and S; is the surface of particle j, respectively.
Mass is conserved in the system so that the summation
of the normal derivative of the concentration at particle
surfaces is zero:

N
Y [ owis; =0 (2.3)
where
o(p) = a;r(i) , (2.4)

and the normal vector n, is directed outward from the
particle. The flux conservation condition at each point
on the interface of a particle is given by

on(p) = 24B)

B (2.5)

o(p),

where v, is the normal velocity of the interface.
Since the concentration is constant on the surface of
each particle, the integral form of Eq. (2.1) is given by

(4]

1 N
u(p) = 5 Z /s o(a)g(p,a)dq + o, (2.6)
where
g(p,q) =In|p —q|, (2.7)

and ug is a constant which accounts for the contribution
from the external boundary. Equation (2.6) has a unique
solution, so o(q) can be evaluated by solving Eq. (2.6)
with the boundary condition Eq. (2.2) and the mass con-
servation condition Eq. (2.3).

We expand o(p) in a Fourier series:

1 .G) . =, (i 5

o(p) = iAg’) + E(Aff) cosnb, + BY) sinnfy;)
n=1

forpon S;,j5=1,2,...,N, (2.8)
where r; is a vector locating a point on the surface of
paljticle J with its origin at the center of particle j, and
AS,]‘) and B,(l] ) are constants to be determined. Note that
B((,’) = 0. Performing the integrals in Egs. (2.3) and

(2.6) (see Appendix) and using the boundary condition,
Eq. (2.2), we obtain
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i 1
Lo A s 4w + > A Tk Ind;u
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k#3
N oo —1,.n+1
(=Dt
Ly
k=1 n=1 J
kZj
X [Ag“) cos(nba;,) + B sin(n&djk)] , (2.11)
N .
S oAl =o, (2.12)
j=1

where d;j, is a separation distance between the centers of
particles j and k. Thus Egs. (2.9) — (2.12) yield a [(2n.+
1)N +1] x [(2n. + 1)N + 1] set of linear equations for the

coefficients AS{), B,(lj), and ug, where n. is a truncation
of the expansion.

Since we have assumed that the particles are circular,
the expansion is truncated at n. = 0, the monopole ap-
proximation (referred to as M), and n. = 1, the dipole
approximation (referred to as D). The monopole term
corresponds to the areal growth rate of the particle:

% =7r; A, (2.13)
where a; is the area of particle j. The dipole terms cor-
respond to the translation velocity of the center of the
particle:

dR,

> (2.14)

= (A§])>B§]))7
where R; is the position vector of the center of particle j.
Note that the particles remain circular if the expansion
is truncated at the dipole level. If higher order terms
are included, the particles change their shapes. Since
this violates our constraint of circular shape, we do not
include the higher order terms. Experiments [19] and
simulations using the CH equation [14,15] show that all
particles are almost circular if the area fraction of the mi-
nority phase is smaller than about 0.3. When the separa-
tion distances between particles are small, the monopole
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and dipole approximations give poor results. However,
as will be shown later, the particles are well separated in
the late stage. Thus we believe that both monopole and
dipole approximations are valid at small area fractions.
The validity of these approximations will be discussed
later.

We perform simulations at area fractions, ¢ = 0.05,
0.13, 0.2, 0.3, and 0.4. The monopole approximation
is employed at ¢ = 0.05, 0.13, and 0.2 and the dipole
approximation is employed at higher area fractions. At
¢ = 0.13 and 0.2, we also perform simulations using the
dipole approximation. Four independent runs are per-
formed for each area fraction, and the results shown in
the following section are the averages of these runs.

As mentioned earlier, the system size must be very
large to allow the system to reach the asymptotic state.
Basically, an (IV + 1) x (N + 1) linear system of equa-
tions has to be solved to determine the growth rate of
the particles if the monopole approximation is employed.
Although the diffusion propagator In|p — q| diverges as
|p — q] = oo, the diffusion field is screened due to the
mass conservation constraint. Thus we only need to
solve much smaller linear systems of equations. When
the growth rate and the translation velocity of a parti-
cle are calculated, the effects of other particles separated
far from the particle can be neglected [4]. The growth
rate and the translation velocity are therefore calculated
by neglecting the effects of particles separated by a cer-
tain cutoff distance. As this cutoff distance increases,
the growth rate and the translation velocity asymptoti-
cally approach constant values. Figure 1 shows the ab-
solute value of the error in the growth rate A¢ using the
monopole approximation relative to the asymptotic value
Ap(00) as a function of the cutoff distance z. at ¢ = 0.13.
The results of ten different configurations are shown in
the figure. As the cutoff distance increases, the error
decreases exponentially. Note that the error becomes
smaller than machine precision at z./(r) larger than 60.
Thus Ag at the largest z. was used as the asymptotic

A (X /A, (00)-11

X /<r>

FIG. 1. The absolute value of the error in the growth rate
using the monopole approximation relative to the asymptotic
value Ap(co) as a function of the cutoff distance at ¢ = 0.13.
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value. We performed smaller scale simulations using
different values of the cutoff distance to determine the
proper value. If the cutoff distance is large enough, the
choice of the cutoff distance does not affect the final re-
sults. The cutoff distances scaled by the average radius
used in the simulations and the average number of par-
ticles in the interaction range, N, are listed in Table I.
Thus we need to solve [Nc(2n.+1)+1] X [No(2n.+1) +1]
linear systems of equations N times for each time step.
The computational cost for each time step is then pro-
portional to N rather than N3, and N, determines the
precision. Note that the computational cost of the dipole
approximation is about 27 times larger than that of
the monopole approximation. Using the cutoff distances
shown in Table I, relative errors of the growth rate and
the translation velocity with the asymptotic values are
much better than 0.5% for most cases. If the growth
rate Ap is close to 0, the error is bigger but does not ex-
ceed 1%. When a particle is located near the edge of the
computational cell, periodic images of other particles are
used to avoid the effects of finite system size.
The area of particles is updated by

a;(t + At) = a;(t) + nr; AL At. (2.15)
Since we expect that (r)3 is proportional to ¢, At is cho-
sen as

_ )
At = i (2.16)

where (rq) is the average radius at ¢ = 0 and 7 is a con-
stant. We chose 7 = 0.005 for all cases except for ¢ = 0.4.
For ¢ = 0.4, 7 = 0.0035 was used. Using this method the
area of particles can become negative if the radius of the
particle is small and 7 is large. This results in an increase
of the area fraction since the total mass is conserved in
the system. To avoid this area fraction change, particles
smaller than 0.1(r) are removed from the system before
calculating the growth rate and the translation veloc-
ity. As mentioned earlier, the present model is based
on the approximation that the diffusional time scale is
much smaller than the time scale for the interfacial mo-
tion. We note, however, that for very small particles, the
time scale for the interfacial motion is comparable to the
diffusional time scale. In addition, the Gibbs-Thomson
equation may not be valid in this regime since curva-
tures are large. Thus the formulation is no longer valid
for such particles. A small particle disappears by giving
its mass to surrounding particles. The change of area of

TABLE I. The cutoff distance z./(r\, the average number
of particles in the interaction range, N., and the constant dg.

¢ ze/(r) N. dy
0.05 37.0 65 2.5
0.13 19.0 45 1.15
0.2 14.0 38 0.74
0.3 10.5 31 0.44
0.4 9.0 30 0.23

the surrounding particles due to the mass from the small
particle may be very small if the removal radius is small
enough. Since the rate of shrinkage of the small particle
is very large, the time required to diffuse this particle into
the matrix phase is very small compared with At. Thus
it is expected that the change of area of the surround-
ing particles during the time interval At is not greatly
affected by the removed particle. Simulations using the
smaller 7 and removal radius were performed, and we did
not find any significant differences. Thus it is expected
that particle removal does not yield serious errors. In all
cases, the area fraction increase was smaller than 2% at
the end of the simulations.

We employ 100000 particles initially. Two methods
are used to place the particles in the computational cell.
The first method is to place a set of particles with the size
distribution function determined from simulations with
fewer particles randomly without overlaps. The second
approach is to use the same initial size distribution, but
each particle has a depletion zone from which particles
are excluded. Thus each particle has the excluded area
of a circular shell of thickness r;d where d is a constant.
The constants used at each area fraction, dy, are also
listed in Table I. Both methods generate different spatial
correlations. As will be shown later, both of the initial
spatial correlations are much different from the asymp-
totic spatial correlations in the late stage. At ¢ = 0.05,
0.13, and 0.2, simulations are performed using the initial
distributions without depletion zones, d = 0, and with
depletion zones d = dgy listed in Table I. We only perform
simulations using the initial distribution with d = dg4 at
¢ = 0.3 and 0.4. This is because a large number of par-
ticles overlap in the initial and intermediate stages if an
initial distribution with d = 0 is employed. In this case,
the area fraction increase is very large and the particle
size distribution has a long tail at large radii due to the
error introduced by the overlaps.

Most of the computational time is spent in creating the
asymptotic spatial correlations. Our purpose is to de-
termine the asymptotic correlation functions in the late
stage, so the time evolution of the spatial correlations
is not important. In addition, both of the initial spatial
correlations may be different from the spatial correlations
created during the nucleation stage in real systems. Thus
a smaller cutoff distance, 0.5z, and a larger time incre-
ment, 27, are used until the number of particles decreases
to 20000. At the end of the rough simulation, we found
about 2% increase of the area fraction and some overlap-
ping particles. The area fraction and particle overlaps
are adjusted by slightly changing the radius and location
of particles. This particle configuration is used as a new
initial condition for a fine simulation. At this time, the
scaled spatial correlation functions are much closer to the
asymptotic correlation functions in the late stage than
those of the initial distributions. However, the scaled
correlation functions are still time dependent. The sim-
ulations are then continued until the number of particles
becomes 100.

The disadvantage of the monopole and dipole approxi-
mations is that the particles can overlap. This is because
interfacial deformation is not allowed in the simulations.
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If simulations are performed without the shape restric-
tion, the particles do not overlap [12,13]. We found some
overlaps in the initial and intermediate stages. The worst
case is the simulation at ¢ = 0.2 using the monopole ap-
proximation and d = 0. In the initial stage, about 1% of
particles are overlapping, but the number of overlapping
particles decreases as time increases. We did not find any
overlaps in the late stage for all area fractions.

III. RESULTS AND DISCUSSION

It is expected that the cube of the average particle
radius is proportional to time in the late stage so that
(rY*=Kt+C (3.1)
holds, where K is the rate constant and C' is an effective
offset. In order to see this behavior, a log-log plot of
average radius versus time is displayed in Fig. 2. The
solid line in the figure indicates the slope of 1/3. The
results using the monopole approximation without initial
depletion zones, d = 0, and with initial depletion zones,
d = 1.15, at ¢ = 0.13 are shown. The average radius and
time are scaled by 1/(ro), and 1/(ro)3, respectively, in the
figure. Note that t = 0 corresponds to the beginning of
the fine simulation and (ro) is the average radius at this
time. In the intermediate stage, t = 1-100, the results
using two different initial conditions are slightly different.
This is due to the different initial spatial correlations.
The slopes n in the log-log plot determined by linear
regression of the data points ¢ > ¢, are listed in Table II.
The values in the table are very close to 1/3 for all cases.
Thus we believe that Eq. (3.1) holds in the late stage.

A. Radial distribution and pair correlation functions

The spatial correlations of particles in real space can be
characterized by the radial distribution function and the

<>/ <ry>
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FIG. 2. A log-log plot of the average particle radius versus
time at ¢ = 0.13.
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TABLE II. The exponents of the growth law, n, in the late
stage t > t..

o) Approximation n te
0.05 M 0.330 + 0.008 400
0.13 M 0.326 + 0.003 200

D 0.327 + 0.001 200

0.2 M 0.332 £ 0.004 200

D 0.331 + 0.005 200

0.3 D 0.334 £ 0.005 100

0.4 D 0.326 + 0.007 100

pair correlation functions. We define the radial distribu-
tion function G(z) as the ratio of the number of particles
in a circular shell of radius  and thickness dz which sur-
rounds a particle to the number of particles in the shell
expected from the number density of the system [4]. The
pair correlation function G(r,r’',z) is defined as the ra-
tio of the number of particles of radius 7' in the shell
surrounding a particle of radius r to that expected from
the number density. In order to obtain good statistics
in the pair correlation functions, we divided the particles
in two classes, larger than the average radius (L) and
smaller than the average radius ().

Figure 3 shows the radial distribution functions in the
late stage and for random initial distributions with and
without depletion zones at ¢ = 0.13. The late time re-
sults are the averages of five different times after t = 200.
While the radial distribution functions are time depen-
dent at earlier times, we did not observe any time de-
pendence after ¢ = 200. The number of particles remain-
ing in the system is about 900 at ¢ = 200 correspond-
ing to 0.9% of the initial number of particles. Although
the initial radial distributions are different, the long time
results evolve to a unique time-independent form. The
late time results fall between the radial distribution func-
tions of the two random spatial distributions. Note that
the radial distribution functions for random initial dis-

T
N random (d=0)
15 | i -eee- random (d=1.15) _
foN © t=200-3200 (M, d=0)
i © 1=200-3200 (M, d=1.15)
?qg \ ©t=200-3200 (D, d=1.15)

~ 1.0
No’
@)
0.5
OO —g‘ L 1
0 5 10 15

X /<r>

FIG. 3. The radial distribution functions in the late stage
at ¢ = 0.13. The radial distributions for the random distri-
butions with d = 0 and 1.15 are also plotted.
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FIG. 4. Comparison of the radial distribution functions in
the late stage and the experimental results by KS [19] at
é = 0.13.

tributions shown in the figure are calculated using the
same particle size distribution as that in the late stage.
We used the initial particle size distribution function ob-
tained by simulations using fewer particles. This particle
size distribution function is the same as that obtained for
the late time results. Thus the differences in the radial
distribution functions are purely due to the differences
in the spatial correlations. An important feature in this
figure is that depletion zones can be observed in the late
stage. The number density of particles is smaller than
that of the random distribution with d = 0 at small
z. The radial distribution function with d = 1.15 ap-
proaches 1 in an oscillatory manner as z/(r) increases.
However, this oscillatory behavior disappears in the late
time results.

Figure 4 compares the radial distribution functions in
the late stage and experimental results by Krichevsky

3 T T T T
~— random (d=0)
S-L P random (d=1.15)
3 7\ O1=200-3200 (M, d=0)
J\ 0t=200-3200 (M, d=1.15)
1
2t /
~~
><n
i
St
e
|G]
1 L
0
0

X /<r>

FIG. 5. Comparison of the small-large correlation functions
in the late stage and the experimental results by KS [19] at
¢ = 0.13. The pair correlation functions for random distribu-
tions with d = 0 and 1.15 are also plotted.
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FIG. 6. The small-small and large-large correlation func-
tions in the late stage at ¢ = 0.13. The pair correlation
functions for random distributions with d = 0 and 1.15 are
also plotted.

and Stavans (KS) [19] at ¢ = 0.13. The KS experiments
were performed for succinonitrile in the liquid-solid co-
existence region. The size of the particles is much larger
than the sample thickness, so the system is effectively
two dimensional. We found very good agreement be-
tween the results of KS and the present results. Figure 5
shows the small-large (S-L) correlation functions in the
late stage and the KS results at ¢ = 0.13. Note that
the small-large and large-small correlation functions are
identical. The present results in the late stage and the
KS results agree reasonably well. The radial distribution
function and the pair correlation functions depend not
only on the particle spatial correlations but also on the
particle size distribution function. As will be shown later,
the agreement between the particle size distributions of
the present results and the KS results is also reasonably
good. Thus we believe that the qualitative features of the

1.5 i 1
O ez
o
———- random (d=0)
osr+ [ random (d=0.23)
— t=100-1600 (D)
o KS
0.0 '
0 2 4 6

X /<r>

FIG. 7. Comparison of the radial distribution functions in
the late stage and the experimental results by KS [19] at
¢ = 0.4. The radial distributions for the random distribu-
tions with d = 0 and 0.23 are also plotted.
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3 T A T
——=—- random (d=0)
| S-L P random (d=0.23)
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0
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FIG. 8. Comparison of the small-large correlation functions
in the late stage and the experimental results by KS [19] at
¢ = 0.4. The pair correlation functions for random distribu-
tions with d = 0 and 0.23 are also plotted.

spatial correlations in the late stage are well described in
the present simulations.

The small-small (S-5) and large-large (L-L) correla-
tion functions at ¢ = 0.13 in the late stage are shown
in Fig. 6. The correlation functions for random distribu-
tions are also plotted in the figure. For both cases, the
late time results fall between the pair correlation func-
tions for random distributions. We should emphasize
that depletion zones exist in all pair correlation functions.
This is the main feature of the spatial correlations in the
late stage. We tried to reproduce the spatial correlation
functions in the late stage by placing particles in the cell
using different values of d. It is possible to obtain a good
fit to the late-stage radial distribution function by care-
fully choosing d. However, this method does not yield
the correct pair correlation functions.

Figures 7-9 show the radial distribution functions, the

G(r,r’,x)

I/ ———- random (d=0)
P e random (d=0.23)
t=100-1600 (D)

0 2 4 6 8
X /<r>

FIG. 9. The small-small and large-large correlation func-
tions in the late stage at ¢ = 0.4. The pair correlation func-
tions for random distributions with d = 0 and 0.23 are also
plotted.
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--------- random (d=0)
——— late stage (M, d=0)
—-— late stage (M, d=d,)
late stage (D, d=d,) $=0.05
$=0.13
—_
>

S’

&) $=0.2
$=0.3
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FIG. 10. The radial distribution functions in the late stage
for various values of ¢. The radial distributions for the ran-
dom distributions with d = 0 are also plotted for reference.

S-L correlation functions, and the S-S and L-L correla-
tion functions, respectively, at ¢ = 0.4 in the late stage
and for random distributions with d = 0 and 0.23. The
results shown are the averages of five different times af-
ter t = 100. The KS results are also plotted in Figs. 7
and 8. The agreement between the late time results and
the experiments is again quite good. We found that the
qualitative features of the correlation functions at this
area fraction are the same as those at ¢ = 0.13.

It has been suggested that the small particles tend to
be located near the large particles [8]. This conclusion
was also reached by KS since there is a strong peak in
the S-L correlation functions at small z/(r). We also ob-
served such peaks in the S-L correlation functions. How-
ever, there exists a peak in all pair correlation functions
at small z/(r) as shown in Figs. 5, 6, 8, and 9. It is ob-
vious from Figs. 5 and 8 that the probability of finding
small particles near the large particles in the late stage is
smaller than that for a random distribution with d = 0.
Thus one must be careful in arriving at such a conclusion.

Figure 10 shows the radial distribution functions for
various values of ¢ in the late stage. The radial distri-
bution functions of a random distribution with d = 0 are
also plotted for reference. The results shown are the av-
erages of five different times in the late stage for ¢ > ¢,
where the values of ¢, are listed in Table II. It is clear that
the number density of particles is smaller at small dis-
tances than that of the random distributions with d =0
for all cases. The qualitative features in the radial dis-
tribution function and the pair correlation functions are
the same for all area fractions. Depletion zones do exist
around the particles. In addition, the qualitative features
of the real space correlation functions for two dimensions
are the same as those in three dimensions [4].

The radial distribution and the pair correlation func-
tions using the monopole and dipole approximations are
compared in Figs. 3-6 and 10. Both of the approxi-
mations give the same qualitative results. However, we
found small quantitative differences in the results. Note



51 NUMERICAL SIMULATION OF TWO-DIMENSIONAL LATE-... 5415

that the differences between the particle size distribution
functions using the monopole and dipole approximations
are small, as will be shown later. Thus the differences
in the radial distribution and pair correlation functions
are mainly due to the different spatial correlations. The
validity of the approximations will be discussed later.

stk = LS00
N N N
= <Z Y(kr;)]* + Z Z
=

where Q is the angle in the k space, ()gq is defined as the
circular average, and ¥ (kr) is the form factor for a circle:

$(kr) = 200, (kr).
Here Ji(kr) is the Bessel function of the first kind and
X;; is a vector locating the center of particle j' with its
origin at the center of particle j. The first term in Eq.
(3.2) is the scattering intensity from individual particles
and the second term is the interference term. The pair
correlation functions are basically the Fourier transforms
of the second term. We define the structure function from
individual particles, Sip(k,t), and the interference term
Sint (k , t) as

(3.3)

N

Sip(k,t) = ) [ (kr;)]?,

i=1

(3.4)

P(rj k) exp(ik - xjj:)>
Q

N N
Sint(kat) = <Z Z
;

(3.5)
Thus

S(k,t) = Sip(k, t) + Sint (K, ). (3.6)

If the system is in the scaling regime, the structure func-
tion obeys the scaling law:

(r)*S(q),

where ¢ = k(r) and S(q) is the scaled structure function.

Figure 11 shows the scaled structure functions in the
late stage at ¢ = 0.05. The scaled structure functions are
time independent in the late stage as expected. Note that
at t = 400 the number of particles still remaining in the
system is about 750. At this area fraction, the structure
functions obtained by CTG and YEGG differ from the
present results. Their structure functions are still time
dependent at small wave numbers, and this may be due

S(k,t) = (3.7)

B. Structure function

We characterize the spatial correlations of particles in
Fourier space by the structure function. The structure
function S(k,t) is defined as

(k #0), (3.2)

Y¥(rj k) exp(ik - x;; )>

Q

[

to an insufficiently large system size in their simulations.

Figure 12 shows a log-log plot of the structure func-
tions shown in Fig. 11. The solid lines in the figure indi-
cate the slopes of 4 and —3, respectively. In Fig. 11 the
differences between the results using two different ini-
tial conditions are not noticeable. However, the different
behaviors at very small wave numbers are clear in Fig.
12. The structure functions at a few of the smallest wave
numbers still depend on time. It seems that the structure
functions at very small wave numbers approach a single
straight line of slope 4 as time increases. The results
using the initial spatial distribution with d = 2.5 ap-
proach the asymptotic state faster. This ¢g* dependence
has been proposed theoretically for spinodal decomposi-
tion [20-22] and for coarsening [23,24]. It should be noted
that we did not find any significant differences in the real
space correlation functions in the late stage between the
results using the initial spatial distributions with d = 0
and d = 2.5 beyond scatter in the data points. The
structure function at small wave numbers may be very
sensitive to spatial correlations. As mentioned earlier,

0.20 - T g T v
Wy © t=400 (M, d=0)
o 01 t=800 (M, d=0)

{ q F > © t=1600 (M, d=0)
g £t=3200 (M, d=0) |

<1 t=6400 (M, d=0)

¥ 1=400 (M, d=2.5)

&> t=800 (M, d=2.5)

+ t=1600 (M, d=2.5) |

x t=3200 (M, d=2.5)

* t=6400 (M, d=2.5)

§

[>)

005+ %
]
@

0.00 ﬁ : .

0.0 1.0 2.0 3.0

FIG. 11. The scaled structure functions in the late stage at
¢ = 0.05.
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FIG. 12. A log-log plot of the scaled structure functions
at ¢ = 0.05. The solid lines indicate slopes of 4 and —3,
respectively.

the interference term is the Fourier transform of the pair
correlation functions. However, the relation between the
g* dependence and the real space correlation functions
is not clear for two and three dimensions. For the one-
dimensional case, the structure function has a ¢ depen-
dence at small wave numbers when the volume fraction
is locally conserved and the particles are located at the
center of the conserved area [22]. This is somewhat sim-
ilar to what is found in the real space correlation func-
tions. However, it is impossible to constrain all particles
to satisfy the local area or volume fraction conservation
condition in two and three dimensions.

At very large wave numbers, the structure function
has the asymptotic form of S(q) ~ ¢—3. This is Porod’s
law [25] which originates from the effect of the sharp
interface. In the present simulations, the interface is
always sharp so the structure function has the form of
S(q) ~ g2 at all times. In the log-log plot shown in Fig.
12, oscillations at large g are clearly observed. These os-
cillations are related to the circular shape and the particle
size distribution [22].

Figure 13 compares the scaled structure functions of
random distributions with d = 0 and 2.5 with that in
the late stage at ¢ = 0.05. The late time results are the
averages of the results with d = 0 and 2.5 shown in Fig.
11. The scaled structure function from individual par-
ticles, Sip(g), is also plotted in the figure for reference.
The late time structure function smoothly approaches 0
as ¢ — 0. However, the structure functions for random
distributions do not seem to approach 0 as ¢ — 0. Com-
paring the structure functions of random distributions
and the late time results, it is clear that the structure
function of a random distribution with d = 2.5 is closer
to the late time results. This may be why the late time
results using initial depletion zones approach the asymp-
totic results faster as shown in Fig. 12.

The scaled structure functions in the late stage using
the monopole and dipole approximations at ¢ = 0.13 and

0.3 -~ T T —
---------- random (d=0)
I\ —=—— random (d=2.5)
’I \ — t=400-6400 (M)
\
———— S )
02 b= o »(d i

S(q)

FIG. 13. Comparison of the scaled structure functions in
the late stage and for random distributions at ¢ = 0.05. The
scattering intensity from individual particles Sip(g) is also
plotted.

0.2 are compared in Figs. 14 and 15, respectively. The re-
sults shown are the averages of five different times in the
late stage. The real space correlation functions using the
monopole and dipole approximations are slightly differ-
ent as mentioned earlier. Those differences correspond to
the differences in the structure functions shown in Figs.
14 and 15. At both values of ¢ the peaks of the structure
functions using the dipole approximation are located at
larger ¢ than those using the monopole approximation.
The differences are small at ¢ = 0.13 but become larger
at ¢ = 0.2. The monopole approximation is a good ap-
proximation when the particles are well separated. As
shown in Fig. 10, the separation distances between par-
ticles become smaller as ¢ increases. This is why the
differences in the structure functions become larger as ¢
increases. The structure function obtained using the CH
equation (CTG) [15] is also plotted in Fig. 15 for com-

4 T T T T

— t=200-3200 (M)
----- t=200-3200 (D)

0.0
0.0 1.0 2.0 3.0 4.0

FIG. 14. The scaled structure functions at ¢ = 0.13.
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FIG. 15. The scaled structure functions at ¢ = 0.2. The
CTG [15] structure function is also plotted.

parison. Note that ¢ = 0.21 in their simulations. We
found good agreement between the results of CTG and
the present results using the dipole approximation.
Figure 16 shows the structure functions normalized by
Sip(0) for various values of ¢. The normalized struc-
ture function from individual particles, Si,(q)/S;p(0), for
¢ = 0.2 is also plotted for reference. While Si;(q)/Sip(0)
depends on ¢ through the particle size distribution func-
tion, the effects of the size distributions are small in the
present simulation since, as will be shown in Fig. 23, the
differences in the size distribution functions are small.
We can estimate the interference term by subtracting
the scattering intensity from individual particles. The
interference term is negative at small wave numbers, but
becomes positive near the peak position. In order to see
this behavior, the interference term normalized by Si;(0)
is plotted in Fig. 17. Using this normalization, the inter-

1.0 . r
e 0=0.05 (M)
----- $=0.13 (D)
0.8 ——=— ¢=0.2 (D) 4
—-—- ¢=0.3 (D)
— 0=0.4 (D)
S 06 f T S,@/5,0) 9=02) ]
k=)
2 I
Z 04 1
0]
02 b .
0 4 5

FIG. 16. The structure functions normalized by Sip(0) in
the late stage for various ¢. The scattering intensity from
individual particles Sip(q)/Sip(0) is also plotted.
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FIG. 17. The interference term normalized by Si,(0) in the
late stage for various ¢.

ference term approaches —1 as ¢ — 0 for all cases. The
interference term asymptotically approaches 0 as ¢ in-
creases. However, we were not able to determine whether
the asymptotic behavior is oscillatory or monotonic due
to scatter in the data points. The quantity Si,(q)/Sip(0)
for ¢ = 0.2 is also plotted in Fig. 17 for comparison. The
interference terms are much smaller than Si;(¢)/Sip(0) at
large wave numbers. Therefore we expect S(gq) = Sip(q)
at large wave numbers. An asymptotic form of S, (g) at
large ¢ is given by [26]

8mr 3
Sip(k,t) =~ k3] cos? (er - 7r)
j=1
4T N{r
~ k3< ) (3.8)
Thus
47N (r)?
Sip(q) = q3< ) (3.9)
at large q.
We define another normalization as
1
s(q) = WS(Q)- (3.10)

Note that N{(r)? is a constant since N ~ t~2/3. Using
this normalization, we expect s(g) = 1/¢® at large q.
Figure 18 shows a log-log plot of the structure functions
normalized by 4w N (r)2. The solid lines in the figure indi-
cate slopes of 4 and —3, respectively. Since the structure
functions at a few of the smallest wave numbers do not
scale well, as shown in Fig. 12, the results shown are the
averages of the structure functions using the initial deple-
tion zones at two latest times. The number of particles
still remaining in the system is about 100-250 at these
times. At large wave numbers all of the results collapse
to a single straight line of slope —3 as expected from the
definition. At small wave numbers the structure func-
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FIG. 18. A log-log plot of the structure functions normal-
ized by 47N (r) for various ¢. The solid lines indicate slopes
of 4 and —3, respectively.

tions seem to have a slope of 4 for all area fractions. The
linear portion is over about 3/4 decade in g. Thus it
is likely that the ¢* dependence is a generic behavior in
late-stage coarsening.

We found that the magnitudes of the oscillations at -

large wave numbers are almost the same order except at
¢ = 0.4. The magnitude of the oscillations depends on
the width of the particle size distributions [22]. Since
the differences in the size distribution are small in the
present simulation, as will be shown later, the effects of
the size distribution on the magnitude of the oscillations
are small. At ¢ = 0.4 the structure function near the
first shoulder is higher than the others. This is because
the interference term is still non-negligible at these wave
numbers. If we plot si,(g) for various ¢, all results almost
collapse to a single curve. The position of the shoulder
can be roughly estimated at the first zero of ¢(k(r)).
Thus the position of the shoulder is given by ¢ ~ 3.8 and
does not depend on ¢ in the s(g) versus g plot. However,
the peak position of the interference term depends on ¢,
as shown in Fig. 17. Roughly speaking, the peak position
of the interference term is inversely proportional to the
peak position of the radial distribution function shown
in Fig. 10. Since the peak position of the radial distribu-
tion functions moves toward smaller z/(r) as ¢ increases,
the peak position of the interference term moves toward
larger q as ¢ increases. Thus the interference term at the
shoulder becomes non-negligible as ¢ increases.

A Porod plot, ¢3s(g) versus g, is shown in Fig. 19.
Using the normalization defined in Eq. (3.10), all of the
results asymptotically approach 1 as g increases. The im-
portance of the interference term can be clearly observed
in this figure. At the first minimum, ¢ ~ 3.3, the data
points for ¢ = 0.05, 0.13, and 0.2 are almost indistin-
guishable. The data points for ¢ = 0.4 at the minimum
are significantly higher than the others. As ¢ increases,
the differences become smaller since the interference term
becomes negligible.

T T T T T T

f e 420,05 (M)
_____ $=0.13 (D)
e —~— ¢=0.2(D)
AN —-—- ¢=0.3 (D)
‘11: A —— ¢=0.4 (D)

FIG. 19. A Porod plot of the structure functions normal-
ized by 47N (r) for various ¢.

C. Particle size distribution function
and rate constant

The particle size distribution function is obtained by
averaging particle radii at five different times in the late
stage. The particle size distribution function is normal-
ized as

[ £ =1, (3.11)
where p = r/(r).

Figures 20-22 show the scaled particle size distribu-
tion functions at ¢ = 0.13, 0.2, and 0.4, respectively.
The present results and particle size distribution func-

2.0 T T r T b
0 < Present (M)
e e ® Present (D)
. I KS
s+ 4 R Ardell 1
——— Marqusee

0.5

0.0 0.5 1.0 1.5 2.0

FIG. 20. Comparison of the particle size distribution func-
tions in the late stage at ¢ = 0.13. The experimental results
by KS [19] and theoretical distribution functions obtained by
Ardell [9] and Marqusee [5] are also plotted.
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FIG. 21. Comparison of the particle size distribution func-
tions in the late stage at ¢ = 0.2. The results of numerical
simulations by CTG [15] and theoretical distribution func-
tions obtained by Ardell [9] and Marqusee [5] are also plotted.

tions determined by Ardell and Marqusee are plotted in
the figures. In Figs. 20 and 22, the experimental results
by KS are also plotted. The agreement between the ex-
perimental and present results is good at ¢ = 0.13. At
¢ = 0.4 the KS results are broader and the peak is lower
than the present results. It should be noted that par-
ticles are no longer circular in experiments at this area
fraction. Thus the differences may be caused by the cir-
cular shape of particles assumed in the simulations. The
particle size distribution obtained by simulations using
the CH equation (CTG) is also plotted in Fig. 21. It
should be noted that ¢ = 0.21 in their simulations. The
CTG and present results agree well. As shown in Fig. 15,
the CTG structure function agrees well with the present
results. Thus we believe that the CH and present models
give qualitatively the same results at ¢ = 0.2. At all area
fractions, the present results agree very well with the size
distribution function obtained by Marqusee. In addition,
the differences between the particle size distribution func-
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0.0 0.5 1.0 1.5 2.0

FIG. 22. Comparison of the particle size distribution func-
tions in the late stage at ¢ = 0.4. The experimental results
by KS [19] and theoretical distribution functions by Ardell [9]
and Marqusee [5] are also plotted.

tions using the monopole and dipole approximations are
very small, as shown in Figs. 20 and 21.

Figure 23 compares the particle size distributions at
¢ = 0.05, 0.2, and 0.4. As ¢ increases, the particle size
distribution function becomes broader. The results at
¢ = 0.13 and 0.3 are not shown in the figure since the
differences are not large. This is the main reason why
the magnitudes of the oscillations in Fig. 18 are almost
the same for all area fractions.

As shown in Fig. 2 and Table I, Eq. (3.1) holds in
the late stage. The rate constant of the cubic growth
law is determined by linear regression of (r)3 versus t
in the late stage where t > t.. Figure 24 compares the
rate constants obtained by the present simulations with
theoretical values obtained by Marqusee [5], Ardell [9],
Yao et al. [11], and Zheng and Gunton [7], and simulation
results by Yao et al. [11]. The present results agree well
with the rate constants obtained by Marqusee. The other
theories give much higher rate constants. As shown in
Figs. 20-22, the size distribution functions of the present
results also agree well with those obtained by Marqusee.
Marqusee’s theory is based on the modified Helmholtz
equation for the average concentration ¢, which assumes
a constant annihilation rate «:

Vi = K%c. (3.12)
K is then determined in a self-consistent manner. We
found that depletion zones exist around particles in the
late stage, so the annihilation rate cannot be constant
at all length scales. However, it is difficult to deter-
mine how the annihilation rate depends on location. The
YEGG simulations give higher rate constants than those
obtained from the present simulations. This may be be-
cause their systems do not reach an asymptotic state.
Finally, we discuss the validity of the present model.
Simulations were performed using both monopole and
dipole approximations at ¢ = 0.13 and 0.2. The qual-
itative features of the spatial correlations using the
monopole and dipole approximations are the same in
both real and Fourier spaces. However, we observed small
differences in the correlation functions. The differences
are small at ¢ = 0.13 but become larger at ¢ = 0.2.
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FIG. 23. The particle size distribution functions at various
values of ¢ in the late stage.



5420

O Present (M)
® Present (D)
Marqusee ~
---------- Ardell
-—~ YEGG

0 YEGG (simulation)
—-—- ZG

0.5

i L

0.0 0.1 0.2 03 0.4
o

FIG. 24. Comparison of the rate constants in the late stage
with those of other simulations and theories.

This is because separation distances between particles
become smaller as ¢ increases. The differences in the
particle size distributions and the rate constants using
both of the approximations are small at both values of
¢. Although the spatial correlations created using the
monopole and dipole approximations are quantitatively
different, the effects of these differences on the kinetics of
coarsening is very small. Since the differences are small at
¢ = 0.13, we can conclude that the monopole approxima-
tion is a good approximation at this area fraction. While
the monopole approximation is not a poor approxima-
tion at ¢ = 0.2, the dipole approximation does give an
improved result. In addition, the present results agree
well with the experimental results at ¢ = 0.13. We also
found good agreement between the simulation results us-
ing the CH equation and the present model at ¢ = 0.2.
Thus we may conclude that the late-stage coarsening pro-
cess is well demonstrated in the present simulations. We
cannot argue about the validity of the dipole approxima-
tion from the present simulation. The differences in the
particle size distribution between the experimental and
present results are not small at ¢ = 0.4. These differences
may be due to the circular shape of particles assumed in
the present simulations. Simulations performed without
the shape restriction can be used to assess the validity
of the dipole approximation. This work, using the fast
multipole method, is currently in progress.

IV. CONCLUSIONS

We have performed numerical simulations of late-stage
coarsening using the monopole and dipole approxima-
tions of the steady state diffusion equation at various
area fractions. The cubic growth law of the average ra-
dius was confirmed for all area fractions. Thus the LSW
scaling law is also applicable in two dimensions.

It is well known that the scaled particle size distri-
bution function evolves to a unique distribution at a
given area fraction which seems to be an attractor in
the late stage. We found that the scaled particle cor-
relation functions using different initial spatial distribu-
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tions also evolve to unique time-independent forms. The
scaled spatial correlation functions also have attractors
in the late stage. The important feature in the real space
correlation functions is that depletion zones exist around
particles. The number density of particles in the vicin-
ity of a particle is smaller than that of a random spatial
distribution. In addition, the qualitative features of the
late-stage spatial correlations in two dimensions are the
same as those in three dimensions.

The structure function seems to have an asymptotic
form of S(q) ~ g* at small wave numbers for all area
fractions. The relation between this behavior and the
real space correlation functions is still unclear. At large
wave numbers we found oscillations around the Porod
tail of ¢73. The magnitudes of the oscillations are com-
parable for all area fractions except at ¢ = 0.4 since the
differences in the size distribution functions are small in
the present simulations. For ¢ < 0.3 the oscillatory be-
havior can be described by the scattering intensity from
individual particles since the interference term is small
at these wave numbers. However, the interference term
is not negligible at ¢ = 0.4.

The differences between the results using the monopole
and dipole approximations at ¢ = 0.13 are small. Thus
the monopole approximation is a good approximation at
this area fraction. For higher area fractions, the dipole
terms should be included. Unfortunately, we cannot de-
termine the validity of the dipole approximation from the
present simulations. Simulations in which the particles
are allowed to change their shapes must be performed to
determine the validity of the dipole approximation.

Although the present model is simple, we found good
agreement with experiments and simulations using the
CH equation. Thus we believe that the qualitative fea-
tures of the late-stage coarsening process are well de-
scribed in the present simulations.
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APPENDIX

To perform the integral in Eq. (2.6) we expand g(p, q)
in powers of the separation distance. When the field
point is on particle j and the integration point is on par-
ticle k, g(p, q) is given by

g(pvq) =1In |djk — Ty + rk‘a (Al)

where d; is a vector emanating from the center of par-
ticle j to the center of particle k. Expanding Eq. (A1) in
powers of r/d, we obtain
oo n n—m.,m
_ D™ (n N7 Tk
Q(Py‘I)—Indjk—ZZ—“n— m ) g
n=1m=0 jk

X COS[—’I’Ledj,c + (n - m)e'rj + ma’l'k]’ (Az)

where 7, Tg, dji are norms of the vectors r;, rg, dji,
respectively. Performing the integral in Eq. (2.6) using
Eq. (A2),
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oo

n n—m, m+1
-1 T T
/ o(a)g(p,a)da = mrAS Indjx = > > ( 13 (:Ln ) &, {Agf) cos[nba, — (n —m)o,,]
Sk

n=1m=0

+B® sin[nby,, — (n — m)OTj]} for p on S;, q on Sy.

n
d7

(A3)

When both the integration point and the field point are located on the same particle, g(p, q) is singular and cannot
be expanded. However, the single layer potential due to particle j for all p except on S; is given by

wAgj)Tj Inr; — 300, [Aslj) cos(nbp) + BY Sin(nap)] %:,j"?_—l for p inside S; (Ada)
f o(a)g(p,a)dq = ) o [.0) 6 e .
5; wAg rjlnp — >0 [An cos(nbp) + B sm(nep)] % 5+ for p outside Sj. (A4b)

Since the single layer potential is continuous across the boundary, the integral on S; can be evaluated by setting

p=r; in Eq. (A4),

. N 7r7'l-
/S_ o(a)g(p,q)dq = TAF)rjlnr; = Y

3 n=1

|:A$lj) cos(nfp) + BY) sin(nOP)] for p on Sj.

(A5)
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